Tag Archives: running

My First 5K

Track

When I was a young lad, 5th grade (maybe?), I ran in my first 5K. It was a big deal for me at the time, since I ran by myself with a bunch of adults. During that race, I was cruising along mid-pack and feeling good! Then, an older guy (maybe my current age, doh!) offered me some unsolicited advice: “Don’t stomp my feet so loudly.”

For the next twenty years (or is it 30? Double Doh!), when I ran purposefully for training or racing (excluding soccer and sprinting), I continued to run with the that in the back of my mind. As a result, I ran more softly:  Landing on my heel and rolling onto my forefoot as I propelled myself forward in a quieter, more gentler fashion. So this presumably unlicensed coach effectively turned me into a heel striker! The act of heel striking meant I was applying brakes each time I put my foot down, which shoots an unnecessary shock up my leg and through my joints. This vicious cycle resulted in me running on soft surfaces whenever I could to “save my knees”.

My high school track coach knew how to push me hard and taught me how to run off the blocks and pass a baton, but he didn’t do much for my running efficiency.  It wasn’t until I started training for triathlon decades later before I learned proper running mechanics. I first learned them through run drills. Since they double as great warm-up exercises, you get to fire your proprioceptors and engage your neuromuscular system to establish good form before you start your workout. Tis the season to sprinkle them in during your track workout, so you come out of the off-season with better form. Better form means less risk of injury and greater efficiency. In other words, you get to train more without setbacks and the suffering ends sooner, since you’ll finish faster at the same effort!

In the end, my loud stomp wasn’t all that bad, at least I landed on the middle of my foot, which is built to reduce a lot of the shock before it gets to the knees. I think some of the noise came from my vertical oscillation. I should have embraced the midfoot strike, but I should have focused my force from an upward direction to a forward direction. If only I knew then what I know now, I would’ve beaten that old guy in my first 5k!

If you have any doubts about your run form, get a coach to observe you and nip it in the bud before you waste precious time and maybe avoid some costly injuries. And in the meantime, come out to one of our track sessions! We have a lot of track options tomorrow! For details, visit www.dfwtriclub.com/calendar.

Review: Stryd Running Power Meter

Having tested the new Stryd Running Power Meter for over a month now, here are my thoughts on it:

Power Meters measure direct energy output as power is being generated, compared to Heart Rate Monitors (“HRM”) that measure how hard the heart is working to support energy output. There is an indirect relationship between power and heart rate. Stated simply, your muscles store energy so they can do some work without major changes in heart rate. As energy production increases and energy storage in the muscles decrease, the heart is recruited to pump blood to replenish that energy. Thus, it takes about 30-60 seconds for your heart rate to catch up to changes in energy production.

When cycling power meters first hit the scene a couple of decades ago, they were very expensive and only used by elite athletes. Like all great new technologies, time has provided economies of scale and resultant falling prices, so you can now find them in most serious cycling circles. Any good coach will suggest getting a power meter before upgrading your bike, (well, depending on the bike, I suppose). As you may have heard before, “You need to build the engine before you build the machine.” And, “What good is a Ferrari if it has a Smart ForTwo engine.”

Now there is a power meter for running. And get this: The price is lower than all current cycling power meters. When you also weigh the fact that cycling power meters have educated consumers about what training with power means, I’d say the running power meter is now on a faster trajectory than we saw with cycling power meters. They will soon be as common as HRMs are today. We can now figure out exactly how much energy we used running through rolling hills. To use an example of running with only a HRM, it is entirely possible to expend 400 watts climbing a 20 second hill hitting Zone 5, but it goes undetected since your heart rate only climbed 10 beats per minute. Thus, it may still look like you are in Zone 3; you won’t even know that you have burned a match. With the Stryd power meter, there is currently a delay of about 3 seconds, but they have talked about decreasing that soon. In the end, 3 seconds is enough to save a match and adjust without cause for concern.

Interestingly, the chest strap HRMs we grew up with are on the verge of becoming obsolete thanks to the spread of optical HRMs in wrist watches. Unfortunately, Stryd goes on your chest too, so it looks like we won’t be able to shake chest straps just yet. At least it does also collect heart rate data, so our silly fashion trend and the tan lines that come with it will be sticking around for a bit longer. I mean, if I had a dollar for every time I was at the track doing 800s and a sprinter asked me what I was wearing around my chest…

When Stryd was first brought to Kickstarter, it was advertised as a device that clipped to the back of your run shorts. I imagine it is hard to get heart rate data from that spot, which may be why they moved it to the chest strap. Needless to say, I look forward to the day that they bring it back… which is hopefully the same day the Garmin 930xt comes with an optical HRM.

Stryd is currently selling their power meter for $200. For a triathlete, this price point is almost a no-brainer. We are used to paying top dollar for equipment, so this feels like a bargain. Even the cheapest cycling power meters start around $450 but can easily reach four figures. Not a bad deal, folks!

The strap that comes in the Stryd box is sub-par. You cannot snap or hook it around your chest; it is always connected like a rubber band. Since you want this thing tight on your chest when you run, it is a bit of a hassle to squeeze into it. BUT, don’t worry, the Stryd works with the Garmin and other HRM chest straps! Problem solved, although more on this soon.

Keep in mind, they are still working through the software side of this. To view my running data with Stryd, I have to log the workout as a bike ride, since Garmin hasn’t yet unlocked the ability to display and record power data in the run screen. Also, in cycling, power meters do not have integrated heart rate data, so we’re waiting on Garmin and the other watch makers to open up the ability to view both power and heart rate in the run fields from one device. For now, you should consider running with TWO chest straps!

Captain Dork (Police Academy)
Police Academy, Captain Dork after wearing two chest straps.

When I first tested this outdoors, I was shocked by how many watts I was pushing at my easy pace. It was difficult to run slow enough to get my power to drop below 200  watts! On a bike, it is pretty easy, but rolling inertia on a bike is much different than stomping through a run. To make more sense of this, I performed a blood lactate test on myself, while on the treadmill. I started my test at a very low speed and increased my speed by 1/2 mph every 5 minutes until exhaustion. This helped confirm the reasonableness of the numbers I was reading and the two tests were consistent. The lab environment controlled for the speed and eliminated the weather and hills from the test. I was able to go below 200 at the lower speeds and my Lactate levels rose in a predictable manner.

I then used this device in an Aquathlon. At the race, there were a couple of Stryd employees also in attendance! Although this is not officially waterproof, they confirmed that I could wear the device during the swim. Although it was a 1 mile swim, I was not diving with it, so there were no issues bringing it into the water for this race. The 10k run that followed gave me an average wattage that was in line with what I would expect from the lactate test. Since an “Open 10K” is a good field test to help determine your lactate threshold, in my case preceded by a swim, it corroborated the existing lactate test.

The final claim that Stryd is selling us on is that this can help improve your run form. Although I’ve played with my run form while using the device, I haven’t been able to test it properly. Every time I look down at my watch, I cut off oxygen by bending my neck and my form suffers. The guys at Stryd have at least one video that shows how this can give you feedback on your running efficiency. When I did play with it, I was not able to see a 10% drop like they mentioned in the video, but again, I did not perform a proper test. Check out the video for their claim:

As expected with new technology, upcoming firmware updates will make it a little more accurate and accessible. In the meantime, I am still very comfortable relying on this data.

My verdict: If you only run treadmills or you avoid hills and bridges, then running with a heart rate monitor alone will work just fine. It is steady feedback without much variation, so the additional effort may not be worth the marginally more expensive price. If you run on hills, frequently change your pace, or just love data, Buy! This is not a gimmick. Run, don’t walk to get your Stryd Running Power Meter. (And by the way, walking does not currently register on the Stryd – just running. It senses when both feet are on the ground at the same time and doesn’t report feedback.)

Part I: Lactate – What is Lactate?

Fun with Lactate!
Fun with Lactate!

Your Lactate Threshold (“LT”) is the single biggest determinant of endurance race performance (Kravitz & Dalleck). In addition, it is the most reliable way to track your progress. Beginner triathletes come into the sport from different backgrounds and may respond differently to various types of training. The best way to know whether it’s working is by testing it “in the lab”. “The lab” represents a consistent atmosphere that is repeatable and controls for variables such as wind, hills, stops lights and heat. The test will tell you which energy systems you need to work on and can play a major role in determining your next training cycle. Testing this directly from your blood is testing it at its source.

You reap the benefit of this in training, since it allows you to train efficiently and effectively. Now that you know your LT, your “Threshold workouts” will be perfectly tailored so you train just below it, which allows you to adapt and increase it. You can then tailor your anaerobic workouts (above threshold) to teach your body to learn how to flush out the “acid” (we’ll define acid in a little bit) effectively so you can recover quicker and are ready for the next hard effort quicker. Finally, your recovery workouts will be exactly that, recovery. There is no more guesswork, you have your zones.

An example on the opposite side of the spectrum is a common challenge that new triathletes face when coming in from other higher intensity sports. They train with an ‘all or nothing’ mindset. In other words, they train too hard too often. These athletes may be very physically fit but produce too much “acid”. In these cases, once identified, it may be beneficial to set a training program where they will get better by keeping their workouts aerobic and detraining their anaerobic system! Yep, I said it! Detrain the anaerobic system. Before I explain why, it is useful to know how your anaerobic system works:

Science Alert (although this is somewhat simplified, skip ahead if you aren’t into the technical stuff): Upon digestion, carbohydrates and sugars turn into glycogen. Glycogen fuels the anaerobic system. As it releases energy, Pyruvate fuels the aerobic system while lactate and positively charged Hydrogen ions (H+) are released into the blood stream. Blood is responsible for carrying oxygen and other nutrients to your muscles. The harder your effort, the more lactate and H+ accumulates in your blood and muscles. Eventually, you are going to reach a point where you cannot flush the lactate and H+ from your muscles faster than you are producing them. That is your Lactate Threshold (“LT”).

Energy and lactate production system.
Image thanks to Jerry Kosgrove at www.lactate.com

Now that we have covered that, there is an important distinction to be made between Lactate, Lactic Acid and the H+ ion. Although lactate is released into the blood at the same time as H+, it is NOT lactate or Lactic Acid that causes the burn in your muscles. It is the H+ ion that is the “acid” mentioned above. Lactic Acid is actually a fuel source. It easily travels through cell membranes to the liver and converts back to glucose for more anaerobic fuel. The reason why we measure lactate and not H+ is that this is much easier to do. They are directly correlated; they are produced at the same time and lactate is actually the buffer that helps deliver H+.  It is common to hear people say that lactic acid causes the burn. Unfortunately, this is inaccurate. If it were true, it would certainly be easier to explain, but ultimately for us athletes (ie, nonscientists), it means the same thing, just replace lactic acid with “positively charged Hydrogen ions”.

Speaking of Hydrogen, did you know that pH stands for the power of Hydrogen? So when you flood your muscles with positively charged Hydrogen ions, you are making them more acidic. In other words, your pH balance gets more acidic. Per WikiPedia: “in chemistry, pH is a measure of the acidity or basicity of an aqueous solution. Solutions with a pH less than 7 are said to be acidic and solutions with a pH greater than 7 are basic or alkaline. Pure water [is completely balanced and] has a pH very close to 7.” The pH range goes from of 0 to 14, with 0 being very acidic and 14 being very basic (alkaline). The pH balance of human blood usually stays around 7.365. Even with an extremely hard workout, our pH does not go very far outside of the 7 range. Thankfully, we are limited on how acidic we can get. Lactate is the base (alkaline) and lactic acid is the acid. Although hard exercise increases our acidity, consuming alkaline food while we are exercising will not have an effect on our immediate recovery. But consuming alkaline food as a regular part of our diet is very highly advised. There is some debate about whether it is the alkaline that helps or whether alkaline foods also tend to be more nutrient dense that is what helps. Regardless, try to limit highly acidic foods, like processed foods (stripped of nutrients), or wheat and sugar that do not have many (or any) nutrients. Fruits and veggies, on the other hand, are high in alkaline and coincidentally have a lot of nutrients. So although your blood remains pretty stable (slightly alkaline), avoiding acidosis is important to keep inflammation under control and eating a nutrient dense diet is extremely important to fuel your workouts.

Coming up in Part II, how this all relates to better performance.

Special thanks to Jerry Kosgrove and the plethora of information at www.lactate.com.